Files
btproximitylights/btcontrol.ino
dragonchaser d2ebff8d60 add default color for public lamps
Signed-off-by: dragonchaser <christian@boltares.de>
2025-07-15 09:04:03 +02:00

325 lines
9.6 KiB
C++

//#include <Arduino.h>
#include <BLEDevice.h>
//#include <BLEScan.h>
#include <FastLED.h>
#include <TimerEvent.h>
#include <mutex>
extern "C" {
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/soc.h"
}
// Methods
uint64_t StrToHex(const char* str);
void CleanDatabase();
void FillLEDsFromPaletteColors( uint8_t colorIndex);
void UpdatePalette();
void Vibrate();
// Bluetooth configuration
#define BLE_ACTIVE_SCAN false
#define BLE_SCAN_INTERVAL 100
#define BLE_SCAN_TIME 1 // in seconds
#define BLE_WINDOW 99 // less or equal setInterval value
// LED configuration
#define LED_TYPE WS2812B
#define LED_DATA_PIN 1 // use 1 for GPIO 1 and 21 for builtin
#define LED_NUM_LEDS 7 // use 1 for builtin and whatever your count is for extern
#define LED_COLOR_ORDER RGB // USE GRB for the onboard led and RGB for the chain
#define LED_BRIGHTNESS 96
#define LED_FRAMES_PER_SECOND 24
#define LED_SETUP_DISPLAY_DELAY 500
#define LED_PALETTE_SIZE 16
// VIBRATION MOTOR configuration
#define VIBRO_PIN 2
#define VIBRO_REPEAT 3
#define VIBRO_SMALL_DELAY 100
#define VIBRO_BIG_DELAY 500
// DATA maintenance configuration
#define UPDATE_INTERVAL 10000 // how often do we update de database?
#define MAX_VANISH_COUNTER 3 // if updateinterval is 10000 => 30s
// Number of devices that can be monitored (might cause a reset because of memory oversaturation!)
// If you are using more then 16, you have to use CRGBPalette256 instead of CRGBPalette16
// It probably makes sense to align this with LED_NUM_LEDS
#define MAX_MONITOR_DEVICES 7
// Minimum transmit power the device needs to be recognice (this defines the min proximity needed for the device to be used)
// TODO: add a table here that defines distance in meters for scenarios where the device is in plain sight
#define MIN_RSSI_POWER -50
#define USE_SERIAL false
// CONSTS
const std::map<String, String> overrideColors = {
{"36E898", "FF0000"}, // MiiBand Klaas
};
const std::map<String, void*> blackList = {
//{ "36E898", nullptr },
};
#define DEVICE_TYPE_PUBLIC_LAMP 1
#define DEVICE_TYPE_PRIVATE_LAMP 2
#define DEVICE_TYPE_AMULETT 3
#define DEVICE_TYPE DEVICE_TYPE_PUBLIC_LAMP
#ifndef DEVICE_TYPE
// WE DO NOT HAVE A DEVICETYPE, so we do not have any variables here
// to make sure the code compile fails
#error "DEVICE_TYPE is not defined"
#elif DEVICE_TYPE == DEVICE_TYPE_PUBLIC_LAMP
// This is a PUBLIC LAMP, no restrictions here
// Does not have a vibration motor
static const bool useVibro = false;
// WARNING: IF THIS LIST CONTAINS > 0 VALUES, NO OTHER DEVICES WILL BE ALLOWED
// IF THIS LIST IS EMPTY IT WILL NOT BE USED
static const std::map<String, void*> whiteList = {};
#define LED_DEFAULT_COLOR_ON CRGB::DarkOrange
#elif DEVICE_TYPE == DEVICE_TYPE_PRIVATE_LAMP
// This is a PRIVATE LAMP, restricted to a list of users
// Does not have a vibration motor
static const bool useVibro = false;
// WARNING: IF THIS LIST CONTAINS > 0 VALUES, NO OTHER DEVICES WILL BE ALLOWED
// IF THIS LIST IS EMPTY IT WILL NOT BE USED
static const std::map<String, void*> whiteList = {
{ "36E898", nullptr },
};
#define LED_DEFAULT_COLOR_ON CRGB::Black
#elif DEVICE_TYPE == DEVICE_TYPE_AMULETT
// This is an portable device, restricted to a list of users
// Comes with a vibration motor to alert wearer
static const bool useVibro = true;
// WARNING: IF THIS LIST CONTAINS > 0 VALUES, NO OTHER DEVICES WILL BE ALLOWED
// IF THIS LIST IS EMPTY IT WILL NOT BE USED
static const std::map<String, void*> whiteList = {
{ "36E898", nullptr },
};
#define LED_DEFAULT_COLOR_ON CRGB::Black
#else
#error "Unknown DEVICE_TYPE"
#endif
// VARIABLES
BLEScan *pBLEScan;
CRGB leds[LED_NUM_LEDS];
CRGBPalette16 pal;
std::map<String,uint8_t> deviceDatabase;
std::mutex databaseMutex;
std::mutex blendMutex;
volatile uint8_t startindex;
volatile uint8_t stepSegments;
TimerEvent updateTimer;
class AdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks {
void onResult(BLEAdvertisedDevice advertisedDevice) {
if (advertisedDevice.getRSSI() > MIN_RSSI_POWER) {
return;
}
String addr = advertisedDevice.getAddress().toString();
String color = String(addr.substring(9,11)+addr.substring(12,14)+addr.substring(15,17));
color.toUpperCase();
// check if whitelist applies and device is allowed
{
if (whiteList.size() > 0) {
auto it = whiteList.find(color);
if (it == whiteList.end()) {
return;
}
}
}
// check if device is blacklisted
{
auto it = blackList.find(color);
if (it != blackList.end()) {
return;
}
}
// check if an override color for the found device exists
{
auto it = overrideColors.find(color);
if (it != overrideColors.end() && !it->second.isEmpty()) {
color = it->second;
}
}
// when the device is not in the database yet, vibrate on first connect
if (useVibro) {
auto it = deviceDatabase.find(color);
if (it != deviceDatabase.end()) {
Vibrate();
}
}
if (deviceDatabase.contains(color) || deviceDatabase.size() + 1 < MAX_MONITOR_DEVICES) {
deviceDatabase[color] = MAX_VANISH_COUNTER;
}
Serial.printf("Address: %s RSSI: %d TX Power: %d Calculated color: %s \n", addr.c_str(), advertisedDevice.getRSSI(), advertisedDevice.getTXPower(), color.c_str());
UpdatePalette();
}
};
void setup() {
if (USE_SERIAL) {
Serial.begin(115200);
}
if (useVibro) {
pinMode(VIBRO_PIN, OUTPUT);
}
UpdatePalette();
FastLED.setBrightness(LED_BRIGHTNESS);
FastLED.addLeds<LED_TYPE,LED_DATA_PIN,LED_COLOR_ORDER>(leds, LED_NUM_LEDS).setCorrection(TypicalLEDStrip);
fill_solid(leds, LED_NUM_LEDS, CRGB::Red );
FastLED.show();
FastLED.delay(LED_SETUP_DISPLAY_DELAY);
fill_solid(leds, LED_NUM_LEDS, CRGB::Green );
FastLED.show();
FastLED.delay(LED_SETUP_DISPLAY_DELAY);
fill_solid(leds, LED_NUM_LEDS, CRGB::Blue );
FastLED.show();
FastLED.delay(LED_SETUP_DISPLAY_DELAY);
fill_solid(leds, LED_NUM_LEDS, CRGB::Black );
FastLED.show();
startindex = 0;
updateTimer.set(UPDATE_INTERVAL, CleanDatabase);
Serial.println("Scanning...");
BLEDevice::init("");
pBLEScan = BLEDevice::getScan(); //create new scan
pBLEScan->setAdvertisedDeviceCallbacks(new AdvertisedDeviceCallbacks());
pBLEScan->setActiveScan(BLE_ACTIVE_SCAN); //active scan uses more power, but get results faster
pBLEScan->setInterval(BLE_SCAN_INTERVAL);
pBLEScan->setWindow(BLE_WINDOW); // less or equal setInterval value
// POWER SAVING!
// Measurements:
// ------------- (All tests run with 1 device detected, providing color FF0000)
// Default, 240Mhz nothing disabled -> 0.13A
// No Wifi, throttled to 80Mhz (this is the minimum) -> 0.11A
// Assuming the best case 0.07A when no lights ae on and the worst case 0.15A when all 7 lights are on
// and using a 20Ah powerbank, the device sholuld run between 5.5 days and 11.9 days
// esp_light_sleep does not work, neither das disabling the brown-out-detector
// Using only the onboard LED it uses 0.05A independent whether LED is on or off
// assuming that we use a 20Ah powerbank again this should give us a runtime of up to 11.9 days
esp_wifi_stop();
esp_wifi_deinit();
esp_wifi_set_mode(WIFI_MODE_NULL);
setCpuFrequencyMhz(80);
}
void loop() {
updateTimer.update();
{
std::lock_guard<std::mutex> lock(databaseMutex);
BLEScanResults *foundDevices = pBLEScan->start(BLE_SCAN_TIME, false);
pBLEScan->clearResults(); // delete results fromBLEScan buffer to release memory
}
FillLEDsFromPaletteColors((startindex++) % LED_PALETTE_SIZE);
FastLED.show();
FastLED.delay(1000/LED_FRAMES_PER_SECOND);
}
// Converts a string to a 64bit HEX value
uint64_t StrToHex(const char* str) {
return (uint64_t) strtoull(str, 0, 16);
}
// Cleans the database, updates VANISH_TICKERS
void CleanDatabase() {
std::lock_guard<std::mutex> lock(databaseMutex);
std::vector<String> keys;
for (auto &itr : deviceDatabase) {
Serial.printf("Decrement: %s -> %d\n", itr.first, itr.second);
itr.second--;
if(itr.second == 0) {
keys.push_back(itr.first);
}
}
for (const auto &itr : keys) {
deviceDatabase.erase(itr);
Serial.printf("Have not seen %s for %d ticks, removing!\n", itr, MAX_VANISH_COUNTER);
}
if (!keys.empty() || deviceDatabase.size() < 1) {
// there are changes to the database, we need to update the palette
UpdatePalette();
}
}
// Renderes Colors from the calculated palette to the led strip
void FillLEDsFromPaletteColors( uint8_t colorIndex) {
for( int i = 0; i < LED_NUM_LEDS; ++i) {
leds[i] = pal[i+colorIndex];
}
}
// Updates the palette using module to create a repeated fillpatern of all detected devices using the lower 24bits of the btle address
void UpdatePalette() {
std::lock_guard<std::mutex> lock(blendMutex);
std::vector<String> colors;
int numColors = deviceDatabase.size();
int pos = 0 ;
for (auto itr: deviceDatabase) {
colors.push_back(itr.first);
}
if (colors.empty()) {
fill_solid(pal.entries, LED_PALETTE_SIZE, LED_DEFAULT_COLOR_ON);
} else {
for (int i=0; i<LED_PALETTE_SIZE; i++) {
pal[i] = CRGB(StrToHex(colors[ i % deviceDatabase.size() ].c_str()));
}
}
}
// Causes the vibration motor to vibrate
void Vibrate() {
for (int i = 0; i < VIBRO_REPEAT; i++) {
for (int j = 0; j < 3; j++) {
delay(VIBRO_SMALL_DELAY);
digitalWrite(VIBRO_PIN, HIGH);
delay(VIBRO_SMALL_DELAY);
digitalWrite(VIBRO_PIN, LOW);
}
delay(VIBRO_BIG_DELAY);
}
}